Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 367(6473): 51-59, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896710

RESUMO

Artemisinin and its derivatives (ARTs) are the frontline drugs against malaria, but resistance is jeopardizing their effectiveness. ART resistance is mediated by mutations in the parasite's Kelch13 protein, but Kelch13 function and its role in resistance remain unclear. In this study, we identified proteins located at a Kelch13-defined compartment. Inactivation of eight of these proteins, including Kelch13, rendered parasites resistant to ART, revealing a pathway critical for resistance. Functional analysis showed that these proteins are required for endocytosis of hemoglobin from the host cell. Parasites with inactivated Kelch13 or a resistance-conferring Kelch13 mutation displayed reduced hemoglobin endocytosis. ARTs are activated by degradation products of hemoglobin. Hence, reduced activity of Kelch13 and its interactors diminishes hemoglobin endocytosis and thereby ART activation, resulting in parasite resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Endocitose/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemoglobinas/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Mutação
2.
Int J Med Microbiol ; 308(1): 13-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28784333

RESUMO

Malaria blood stage parasites develop within red blood cells where they are contained in a vacuolar compartment known as the parasitophorous vacuole (PV). This compartment holds a key role in the interaction of the parasite with its host cell. However, the proteome of this compartment has so far not been comprehensively analysed. Here we used BioID in asexual blood stages of the most virulent human malaria parasite Plasmodium falciparum to identify new proteins of the PV. The resulting proteome contained many of the already known PV proteins and validation by GFP-knock-in of 10 previously in P. falciparum uncharacterised hits revealed 5 new PV proteins and two with a partial PV localisation. This included proteins peripherally attached to the inner face of the PV membrane as well as proteins anchored in the parasite plasma membrane that protrude into the PV. Using selectable targeted gene disruption we generated mutants for 2 of the 10 candidates. In contrast we could not select parasites with disruptions for another 3 candidates, strongly suggesting that they are important for parasite growth. Interestingly, one of these included the orthologue of UIS2, a protein previously proposed to regulate protein translation in the parasite cytoplasm but here shown to be an essential PV protein. This work extends the number of known PV proteins and provides a starting point for further functional analyses of this compartment.


Assuntos
Plasmodium falciparum/química , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Biotinilação , Membrana Celular/metabolismo , Eritrócitos/parasitologia , Técnicas de Introdução de Genes , Humanos , Membranas Intracelulares/metabolismo , Estágios do Ciclo de Vida , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/genética , Proteínas de Protozoários/genética , Vacúolos/química , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...